ALCIDES ZANAROTTI JUNIOR

ANALISE COMPARATIVA DE ARQUITETURAS PARA
GERENCIAMENTO DE OBJETOS EM AMBIENTES COMPUTACIONAIS
DISTRIBUIDOS.

Monografia apresentada a Escola
Politécnica da Universidade Sdo Paulo,
para conclusio do Curso de MBA em

Engenharia de Software.

Area de Concentragéio:

Ambientes Computacionais Distribuidos.

Orientadora:

Prof® Jussara Pimenta Mattos

S0 Paulo
2002

AGRADECIMENTOS
A amiga e orientadora, Jussara Pimenta Matos, pelas diretrizes seguras e permanente
incentivo.
Aos meus familiares que me apoiaram em todos momentos.

Aos colegas que, direta e indiretamente, colaboraram na elaboragéio deste trabalho.

RESUMO

Este trabalho tem como objetivo apresentar e comparar as arquiteturas para
gerenciamento de objetos em ambientes computacionais distribuidos, que integram

as principais plataformas comercias, servindo de base para selegéo de uma delas.

O desenvolvimento de sistemas para ambientes distribuidos representa um fator
importante na escolha de uma arquitetura, sem um tratamento adequado, esses
sistemas costumam apresentar resultados pouco produtivos. Portanto, a adogdo de
padrdes no desenvolvimento de sistemas ¢ recomendével, de forma que as metas das

empresas possam ser atingidas.

Neste trabalho é referenciado um padrio para construgdo desse tipo sistema, € com
base na sua especifica¢do é possivel desenvolver sistemas atendendo requisitos de

portabilidade e de interoperabilidade.

De forma a auxiliar na escolha de uma arquitetura adequada para o gerenciamento de
objetos em ambientes distribuidos, também sdo apresentadas as caracteristicas das

plataformas que as integram.

ABSTRACT

This work has as objective to present and to compare the architectures for object
management in distributed computational environments, that integrate the main

platforms deal, serving of base for election of one of them.

The development of systems for distributed environments represents an important
factor in the choice of an architectures, without an adjusted treatment, these systems
costumam to present little resulted productive. Therefore, the adoption of standards
in the development of systems is recommendable, of form that the goals of the

companies can be reached.

In this work a standard for construction of this type is referenciado system, and on
the basis of its specification is possible to develop interoperabilidade and

portabilidade systems being taken care of requisite.

Of form to assist it in the choice of an architecture adjusted for the object
management in distributed environments, also the characteristics of the platforms are

presented that integrate them.

SUMARIO

LISTA DE ABREVIATURAS E SIGLAS

LISTA DE TABELAS

LISTA DE FIGURAS

1 - INTRODUGAO.oooeieieeeemeeeeeveemrees v reesens s en s aes s e seres s s bae s enes 1
1.1 - Consideragtes INICIAIS.vieveecvrireeeereereeeiriereeesimetvesssssessesaseessasssnscsnesessssssesnnns 1
1.2 - Objetivo do TraballiO......cvvvveeireneieeeenie ettt e 2
1.3 - Motivag8o do Trabalho........cooici e pi
1.4 - Estrutura do Trabalho........ccocvionnnc e 3
2 - ESPECIFICAGCAO DO PADRAOQ CORBA.......coovivrormremccerireieneneseeemesiesseseee 5
B B < §E:174) o Lo« PSP PP OO 5
2.2 - Arquitetura de Comunicagfo entre ObJetos. ..., 6
2.3 - Tipos de Implementaciio de Objetos......ceivveccniriniiiicrren e, 11
2.4 - Interoperabilidade de Objetos.........ccocviniiiiiii 13
2.5 - Persisténcia de OBJetos....viveirerrireieeieirre et st 15
2,6 - ReplicagBo de OBJEL0S.....ccoommriiirinnnieisisnssris st e 19
3 - ARQUITETURA EJB DA PLATAFORMA J2EE.......ccooiiiiiiicinnnciininnes 21
3.1 = HISEOTICO. ..ccuiieiniiiniirccininret e e s ne e 21
3.2 - ARQUITETURA EJB...coiiiiiiieeeccimeie e esacee e seemst et s 24
3.2.1 - CHENte EJB. ottt stee e s e 24
3.2.2 - Servidor BEIB...ooeeeceien et s s 26
3.2.3 - Desenvolvimento de componentes para EJB.........cccoinnn. 37
3.2.3.1 - LiNGUagem JAVA......cccccvvriinvinimriinrniresninne e ettt 37
3.2.3.2 - Wb SerVICES. . .uiut ettt 41
4 - ARQUITETURA DA PLATAFORMA NET ... 43
T 3 R 3 6 F15) ¢ (oo SO OO PP PO 43
4.2 - Arquitetura NET ...cccoiiiiiiriiii e 46
4.3 - Desenvolvimento de aplicagdes para a NET ... 53
4.3.1 - Linguagem CH.......oceoiiiieirceii e csaerm s sasss st s s ssas s 53
4.3.2 - WED SeIVICES. ..uvuiiiii ittt 55
5 - ANALISE COMPARATIVA ENTRE A ARQUITETURA EJB DA
PLATAFORMA J2EE E ARQUITETURA DA PLATAFORMA NET.............ooee 58

6 - CONCLUSAOQ......ootieeeeenrieesss s s eneas st sreeassssts st bbb e sbacenenes 61

7 - BIBLIOGRAFIA

...

LISTA DE ABREVIATURAS E SIGLAS

API - Application Program Interface
BLC - Basic Class Library

BMP - Bean Manager Persistence

CGI -Common Gateway Interface

CLS - Common Language Specification
CLR - Common Language Runtime
CMP - Container Bean Persistence
CORBA - Common Object Request Broker Architecture
CTS - Common Type System

DII - Dynamic Invocation Interface

DLL - Dynamic Link Library

EJB - Enterprise JavaBeans

ENC - Enviroment Naming Context

GC - Garbage Collector

HTTP - Hypertext Transfer Protocol

IDL - Interface Description Language
[IOP - Internet Inter -ORB Protocol

IL - Intermediate Language

IR - Interface Repository

IJNDI - Java Name and Directory Interface
JIT - Just in time

JPS - Java Pet Store

JRE - Java Runtime Enviroment

JVM - Java Virtual Machine

J2EE - Java 2 Plataform, Enterprise Edition
OMA - Object Management Architecture
OMG - Object Management Group

ORB - Object Request Broker

PDS - Persistent Data Services

PE - Portable Executable

PO - Persistent Object

POM - Persistent Objects Manage

POS - Persistent Object Service

RMI - Remote Method Invocation
SOAP - Simple Object Access Protocol
TCP - Transmission Control Protocol
VES - Virtual Execution System

XML - Extensible Markup Language

LISTA DE TABELAS

Tabela 5.1 - Quadro comparativo entre as plataformas J2EE e NET

LISTA DE FIGURAS

Figura 1.1 — Diagrama de atividades do processo de elaboragéio deste trabalho.......... 4
Figura 2.1 - Representagfo da solicitagdo de um servigo através do ORB................. 7
Figura 2.2 — Estrutura individual de um ORB.....c.cooniiiii i 8
Figura 2.3 — Requisig8o de um Clente.......covevenni e 9
Figura 2.4 — ORB transferindo a requisi¢io do cliente..........ccoviiiiinninnins 10
Figura 2.5 - Interagdo da implementagdo do objeto com 0 ORB....c.cooovviiiiiiiinnns 12
Figura 2.6 - IIOP - Comunicag@o entre ORBS.........ocvooieiiiii e 15
Figura 2.7 — Implementag@io de persisténcia em diferentes meios.cooeeiiicnns 17
Figura 2.8 — Elementos do POS.........oooiiiiii e 18
Figura 3.1 — Plataforma J2EE em fungio do modelo de trés camadas.coveev.. 23
Figura 3.2 — Componentes da arquitetura EJB......cooovvniiiiies 24
Figura 3.3 —EIBCONAINET.....cccovivivierririnmrs s tastssinesere et 27
Figura. 3.4 — Diagrama de Seqiiéncia, funcionamento dos componentes EJB........... 32

Figura 3.5 — Processo de compilagdo e execugio de aplicagdes Java Stand Alone....40

Figura 3.6 - Interagdo entre emissor, intermediario € receptor através de XML........ 43
Figura 4.1 — DiSPOSIIVOS.....ciiiivririiiteistes st e st 44
Figura 4.2 — Web ServiCeS.....cooiiirmrrriiccieienisseni e e 45
Figura 4.3 — Passport / SEGUIANGA.cceueierrmrmeriiisnirerene st 45
Figura 4.4 — Web Services Enabler.........cooooii 45
FGUIA 4.5 — SEIVETS ..o ioveriiiirirerrrecsetes bbb 45
Figura 4.6 — Arquitetura da plataforma NET.........ccoooriiiiie 47
Figura 4.7 — Processo de execucéio de uma aplicagdo NET....cccoiiini 52

Figura 4.8 — Estrutura basica de uma aplicagdo NET.....ccccconiiiii 55

1 - INTRODUCAO

A computagio em ambientes distribuidos é complexa e sujeita a falhas. A escolha da
arquitetura adequada para o gerenciamento dos diferentes tipos de sistemas, que
podem funcionar nesses ambientes, representa um fator importante para uma

corporagio.

Para suprir as necessidades decotrentes da natureza dos ambientes distribuidos, as
arquiteturas para gerenciamento de objetos devem atender algumas caracteristicas,
como por exemplo: flexibilidade de comunicagdo em multiplos protocolos;
portabilidade; gerenciamento de objetos; infra-estrutura para implementag@o;

escalabilidade.

Durante uma declara¢io do diretor de internet do banco Itat (PINTO, A . P., 2001),
ele cita: “Uma de nossas principais metas é oferecer servigos e solugdes que utilizem
tecnologia de ponta, agilizando e trazendo mais funcionalidades e modernidade para
os nossos clientes. Estaremos utilizando a plataforma .NET para dar maior
flexibilidade aos processos de comércio eletrdnico”. Nesta declaragfio, a plataforma
NET é citada como solugdo para problemas de flexibilidade aos processos de

comércio eletrdnico.

As caracteristicas de uma plataforma sfo refletidas nas especificagbes de suas
arquiteturas, algumas vezes, e as arquiteturas podem servir de base para a criagio de

uma plataforma.

1.1 - Consideracdes Iniciais

Atualmente, as duas principais plataformas que possuem arquiteturas com suporte
para gerenciamento de objetos ambientes computacionais distribuidos sdo: a
plataforma J2EE (Java 2 Plataform, Enterprise FEdition) criada pela Sun

Microsystems e a plataforma .NET fornecida pela Microsoft. A apresentagio dessas

plataformas esta concentrada na especificagio da arquitetura de cada uma delas,

desde o funcionamento até a infra-estrutura para construg@o de sistemas.

Atualmente, a constru¢do de sistemas para ambientes distribuidos representa um
grande desafio para os arquitetos. Desenvolver um sistema ndo significa apenas
solucionar o problema para o qual foi concebido, & necessério prever, por exemplo,
necessidades de expansdo, que podem surgir durante o periodo de sua utilizagdo, de
acordo com o tipo de aplicagdo. Algumas caracteristicas e fungdes necessarias a um
sistema s3o complexas e de dificil percepgiio durante o periodo de definigdo e

desenvolvimento de um sistema.

A aderéncia a padrdes para construglo deste tipo de sistema ¢ uma das formas de
assegurar que as necessidades sejam supridas. Como conseqiiéncia disto, o padrdo
CORBA (Common Object Request Broker Architecture) surgiu para especificar
(CORBA,2002) como construir objetos para ambientes distribuidos, garantindo uma
implementagio segura de necessidades como, por exemplo, a interoperabilidade com
outros objetos. Objeto é um termo usado dentro do contexto da técnica Orientada a
Objetos (BOOCH et al., 1998) para representar um componente ou sistema, capaz de

realizar operagdes ou fornecer servigos.

1.2 - Objetivo do Trabalho

Este trabalho tem como objetivo apresentar e comparar as arquiteturas para
gerenciamento de objetos em ambientes computacionais distribuidos, que integram
as duas plataformas comercias mais discutidas atualmente. Para tanto, sdo
apresentados os principais critérios que podem servir de base para selecdo de uma

delas.
1.3 - Motivacio do Trabalho

As empresas devem escolher cuidadosamente as arquiteturas disponiveis no

mercado, em especial com suporte para ambientes distribuidos, porque a

dependéncia em relagio a uma arquitetura pode causar um impacto significativo no

desenvolvimento ou integracdo de sistemas ou aplicagdes em uma corporagéo.

A principal motivagiio para a elaboragio deste trabalho é contribuir, atraveés do
conhecimento e experiéncia profissional do autor, adquiridos no desenvolvimento de
sistemas para ambiente Internet, apresentando uma analise comparativa entre
arquiteturas, de tal forma a auxiliar aqueles que desenvolvem sistemas com

caracteristicas similares.

1.4 - Estrutura do Trabalho

O capitulo 1 apresenta o objetivo e a motivagdo para a elaboragdo desta monografia,

indicando os aspectos considerados importantes ao longo deste trabatho.

O capitulo 2 apresenta a especificagio do padric CORBA considerando algumas
caracteristicas relevantes como a arquitetura de comunicagfo entre objetos, a

implementagéo de objetos ¢ sua interoperabilidade com outros objetos.

Os capitulos 3 ¢ 4 apresentam as plataformas J2EE e .NET, respectivamente. Estas
plataformas utilizam o padrio CORBA, e a descri¢do de cada uma delas esta

concentrada na arquitetura para gerenciamento de objetos em ambientes distribuidos.

O capitulo 5 é apresenta uma andlise comparativa entre a arquitetura EJB da
plataforma J2EE e a arquitetura da plataforma .NET, onde ¢ elaborado um quadro
comparativo indicando como as principais caracteristicas dessas arquiteturas estao

relacionadas.

O capitulo 6 apresenta a conclusdo final, as contribuig3es e sugesttes para trabathos

futuros.

O processo de elaboragio deste trabalho € apresentado no digrama de atividades da

figura 1.1, localizada na préxima pagina.

Especificagic do Padréo

CORBA
Andlise das caracteristicas da Andlise das caracteristica da
arquitetura da plataforma .NET arquitetura EJB da plataforma J2EE
Comparagao
Conclusdo
®

Figura 1.1 — Diagrama de atividades do processo de elaboragiio deste trabalho.

2 - ESPECIFICACAO DO PADRAO CORBA

2.1 - Historico

Como uma forma de tratar € simplificar a computagdo em sistemas distribuidos
heterogéneos, o conséreio OMG (Object Management Group) propds a especificagio
do padrdo CORBA (CORBA, 2002).

A OMG ¢ um dos varios consércios existentes, atualmente é composta de
aproximadamente de 800 empresas, tendo como um dos objetivos a especificagdo de
padrdes a serem utilizados na construgio de objetos para ambientes distribuidos,
incentivando a reutilizagio de componentes légicos através da técnica de orientagdo
a objetos. Tendo como base os objetivos da OMG surgiu a OMA (Object
Management Architecture) que define em um conjunto de padrdes, a serem aplicados
no projeto de uma arquitetura, sobre a qual objetos para ambientes distribuidos sdo

construidos. O padrio CORBA faz parte da OMA (OMA,2002).

Normalmente, as redes de computadores apresentam caracteristicas heterogéneas.
Essa heterogeneidade ocorre tanto em relagio aos dispositivos computacionais
quanto em sistemas, sendo essa afirmagfo vélida tanto em ambientes académicos
quanto comerciais. Na teoria, essa diversidade de componentes possibilitaria um
maior nimero de configuragdes, cada uma das quais mais adequada ao desempenho
de uma determinada tarefa ou para uma determinada situagdo. Porém, na pratica

nota-se que o controle dessas diferentes configuragdes € bastante complexo.

O padrio CORBA especifica como construir objetos, permitindo que se realizem
requisi¢des a outros objetos de forma transparente, independente da plataforma que
esteja sendo usada, dessa forma é possivel desenvolver produtos ou sistemas, de
forma a atender requisitos de portabilidade e interoperabilidade, que devem estar
refletidos na implementagfio através de qualquer linguagem de programagdo. O uso
dessa especificagiio possibilita a construgio rdpida de sistemas para ambientes
distribuidos, além de melhorar sua manutengfo, devido as caracteristicas aderentes

ao padrio CORBA(CORBA, 2002)..

2.2 - Arquitetura de Comunicaciio entre Objetos

O padrio CORBA ¢ mais do que um conjunto de regras para construgio de objetos.
Através de sua adogio, é possivel utilizar uma infra-estrutura de servigos e utilitarios
que podem facilitar a construgio e integragio de sistemas em ambientes distribuidos
(CORBA, 2002).

Em geral, nos ambientes distribuidos o cliente possui acesso a referéncias do objeto

a ser requisitar, conhece a estrutura 16gica do objeto, de acordo com sua interface. No
padrioc CORBA, a IDL(Interface Description Language) € respensavel por informar
aos clientes quais operagdes estdo disponiveis e como elas podem ser requisitadas em
umm objeto remoto, construido baseado na especificagiio. Esta linguagem define o
tipo do objeto pela especificagio de sua interface, que consiste de uma série de
operacies e de pardmetros. Através da defini¢éo da IDL, € possivel mapear objetos

em qualquer linguagem de programagao.

Diferentes linguagens de programagio, orientadas a objetos ou ndo, podem requisitar
os objetos que seguem o padrio CORBA. E importante ressaltar que o mapeamento
feito com a IDL tem que ser o mesmo para todas as implementagdes do objeto, esse
mapeamento inclui a defini¢io especifica dos tipos de dados ¢ das regras para

requisitar objetos.

Para o mapeamento de lingnagens ndio orientadas a objeto, existe uma interface
especializada, de acordo com o tipo da linguagem, denominada IDL stub. O IDL stub
define operagdes identificaveis pelos desenvolvedores, uma vez que eles sdo
familiarizados com a linguagem de programa¢do que implementa a interface. Em
alguns casos, por exemplo, rotinas de linguagens especificas podem ser usadas para
sincronizar as linhas de controle do programa, como a requisi¢do de componentes

(HARKEY, D.; ORFALL R, 1997).

O gerenciamento da comunicagio entre objetos, em sistemas distribuidos que
seguem o padrio CORBA ¢ feito pelo ORB (Object Request Broker), fluxo de

comunicacio apresentado na figura 2.1, objeto responsavel por:

e Prover os mecanismos necessarios para encontrar a implementacdo de um
objeto para o pedido de um cliente;
e Preparar a implementagfio do objeto para receber ¢ pedido;

e Comunicar os dados para permitir a realizagfo do pedido.

ORB
e.r'vi. 0 - - Aplicagao
Remoto - v Cliente

Figura 2.1- Representacio da solicitagdo de um servigo através do ORB

Nota-se que o cliente realiza requisi¢des, através do ORB que prové um
gerenciamento de comunicagio, a um nivel de abstracdo que permite a utilizagdo de

um objeto independente da localizagdo da sua implementagéo.

Algumas implementagbes de ORB possuem diferentes representagdes para objetos €
diferentes maneiras de realizar requisigdes, isto é possivel para um cliente que possui
acesso simultaneo a duas referéncias de objetos gerenciadas pelo mesmo ORB. A

especificacio da interface do ORB esta organizada em 3 categorias:

e Operagdes comuns para todas implementagdes do ORB;

e Operagdes especificas para tipos particulares de objetos;

e Operagdes especificas para estilos particulares de implementagio de

objeto.

A Figura 2.2 apresenta a estrutura individual de um ORB. As setas indicam se o
ORB ¢é chamado ou faz uma chamada. O atendimento das requisi¢gdes de um cliente

sfo realizadas de duas formas:

o Estitica: é possivel definir uma interface de objeto estaticamente atraveés
de uma IDL stub, definindo a propriedade do objeto como estatica;

¢ Dinamica: é possivel adicionar uma interface dinamicamente no servi¢o de
IR (Interface Repository) através de uma DII (Dynamic Invocation

Interface), permitindo acesso a esses componentes durante o tempo de

execucio
Cliente Implementa¢do do Objeto
\ A l T
4 4
Dynamic IDL ORB IDL ‘ Dynamic Adaptador
Interface Stub Interface S Skeleton de'ObIgy

ORB Core

Figura 2.2 - Estrutura individual de um ORB (Adaptada da referéncia
(CORBA,2002)).

O IR constitui o servico responséavel por fornecer informagdes da IDL, disponiveis
em tempo de execugfo. As informagdes fomecidas pelo IR sdio usadas para realizar

requisigSes. Utilizando estas informagdes, € possivel que o programa enconire

objetos em que a interface é desconhecida no processo de compilagfio, mas desta

forma, é possivel determinar as operagdes validas para este objeto ¢ invoca-lo.

O DII representa a interface que permite a implementagio dindmica de requisigdes a
objetos, isto &, ao invés de chamar uma rotina especifica de uma operacio particular
de um objeto, o cliente pode especificar no objeto a ser invocado uma operagio
através da requisi¢io. Assim, o codige cliente pode conter informagbes sobre as
operagdes a serem realizadas e os tipos de pardmetros a serem passados (estes s3o

obtidos da IR ou de outra fonte em tempo de execucdo).

O gerenciamento da comunicagio entre objetos por um ORB acontece da seguinte
forma:

e O cliente faz uma requisi¢io tendo acesso a uma referéncia do objeto;
e A requisi¢iio encontra um IDL stub especifico para aquele objeto;

s A requisi¢@o cria uma DIL

Este processo ¢ apresentado na figura 2.3, tanto o IDL stub quanto a DII satisfazem a

mesma seméntica de requisi¢io.

T mwrface ideatical for mil OR B Im plem entetlo ne

B hore are ptube end = okelswn for emch ohlect tvpe

1 oRf-dependant Interfmce

Figura 2.3 - Requisi¢do de um cliente (CORBA,2002).

10

Em seguida, o ORB localiza a implementagdo do codigo desejado, transmite os
parmetros e transfere o controle da implementa¢io do objeto através do adaptador

de objeto, fluxo apresentado na figura 2.4.

Gb]act Implamnntatlua

ORH Statlc IOL | | Dyrmmilc
Interfuce Shkeleton

Ohbje ot
Admapter

ORB Cora

[1 wmwrmce Identlcal for mll OR B Im plem entatlone
@@ There may be multlple ohlsct edepters
BN "here nre stube snd w ekeleton for emch chlect type J" Nosmal cell interfece
{1 orB-dependent InterWce

1 Up~call Inter mce

Figura 2.4 - ORB transferindo a requisi¢io do cliente (CORBA,2002).

O adaptador de objeto é o componente responsavel por exportar a interface para a

implementag#o do objeto, tendo as seguintes fungdes:

e Geragfio € interpretagdo de referéncia de objetos;

e Métodos de invocag@o;

» Seguranga das interagdes;

e Registro das implementagdes;

e Ativagdo/desativagio de objetos;

e Mapeamento da referéncia de objetos para a correspondente

implementagéo de objeto;

O adaptador de objetos define varios servicos do ORB, que a implementagdo de

objeto requisitado necessita. Diferentes ORBs fornecem diferentes niveis de servigos

e diferentes ambientes de operagio que tem algumas propriedades implicitas e
necessttaram que outras sejam adicionadas pelo adaptador de objetos. Por exemplo, €
comum para a implementagdo do objeto a necessidade de salvar certos valores de
referéncia de objetos, para obtengio de uma facil identificacdio do objeto invocado.
Se o adaptador de objeto permite em uma implementagdo especificar certos valores
quando um novo objeto € criado, ele pode ser capaz de guarda-los em uma referéncia

de objeto para 0 ORB.

Nio € necessario que todos os adaptadores de objetos fornegam a mesma interface e
funcionalidade. Algumas impiementagdes de objetos tém necessidades especiais, por
exemplo, uma base de dados orientada a objeto pode registrar implicitamente varios
objetos sem fazer requisi¢bes individuais ao adaptador de objeto. Neste caso, €

desnecessério para o adaptador de objetos manter qualguer objeto por estado.

Existem vérios tipos de adaptadores de objetos, a maioria € projetada para atender
diferentes formas de implementagio de objetos, assim, somente sdo considerados
novos adaptadores de objetos, quando a implementagéo requisitar diferentes servigos

ou interfaces.

Através dessas especificagles, é possivel desenvolver implementagdes de objetos
localizados em qualquer lugar, encapsulados como componentes que clientes

remotos podem acessar através de requisi¢des de métodos.
2.3 - Tipos de Implementacéio de Objetos

Geralmente, as implementagdes de objetos ndo dependem do ORB, elas podem
selecionar interfaces para servigos independentes do ORB, através da escolha do
adaptador de objetos. A implementacdo do objeto prové o estado atual e o
comportamento com do objeto. Além da definigdio de métodos para suas proprias
operagbes, uma implementagcdio usualmente define procedimentos para ativar e
desativar objetos, e usara outros objetos ou estruturas para tornar o estado do objeto

persistente para controle de acesso. A implementagdo do objeio, como é apresentado

12

na figura 2.5, interage com o ORB de diversas maneiras para criar novos objetos e

para obter servigos dependentes do ORB.

Oblect Im plem entatlon

Mathod s for Ohbjsct dmte
Interface A .

DR B ohjest referen ces

LG mry Reutnes

Dynamioc Ctbject adaptsr
Skalaton routine s

Skelston for
Interface &

Figura 2.5 - Interagdo da implementaggo do objeto com o ORB (CORBA,2002).

Devido a grande variedade de implementagGes de objetos, € dificil definir um

padrdo. H4 quatro tipos de implementagdes principais (OMG ,2002):

e Servicos (CORBA services) - sdo especificages de objetos que provém a
assisténcia fundamental e de baixo nivel para todas as aplicagdes Se existir
um mecanismo de comunicagdo adequado, o ORB pode ser implementado
com rotinas residentes no cliente ¢ implementagdes. O cliente pode acessar
direto 4 localizagio do servigo para estabelecer comunicagdo com as
implementagdes;

e Utilitdrios (CORBA facilities) - um conjunto de especificagdes de alto
nivel que fornece um conjunto de servigos exigidos por muitas aplicagdes
Para centralizar o controle do ORB, todos clientes e implementagdes podem
comunicar-se com um ou mais servidores cujo frabalho € rotear as requisi¢des

dos clientes para as implementagdes;

13

e Interfaces de Dominios de Aplicagdo (CORBA domains) - especificacdes
para atender uma area especifica de aplicagdes. Para realgar os requisitos de
seguranca, robustez ¢ desempenho, 0 ORB pode utilizar servigos basicos de
um sistema operacional. Referéncias de objeto podem ser feitas de forma a
ndo serem corrompidas, reduzindo assim o custo de autenticidade de cada
requisi¢io;

o Interfaces de Aplicagdo (CORBA applications) - sdo interfaces
especificas de aplicagdes do usuario e, portanto nio sdo padronizadas. Para
objetos simples e que a implementagdo pode ser dividida, a implementagfo
utiliza bibliotecas. Neste caso, o IDL stub pode ter os métodos atuais, isto &,
assume que € possivel para o programa cliente acessar os dados do objeto e

desta forma, a implementagio garante que o cliente nio modificard os dados.

Afravés desses tipos de implementagdes, € possivel construir objetos seguindo a
especificagdo do padrioc CORBA ¢ que atendam a diferentes finalidades, interagindo

em um ambiente distribuido heterogéneo.

2.4 - Interoperabilidade de Objetos

Como previsto pela OMG(OMG,2002), existe atualmente uma grande variedade de
produtos que obedecem a especificacdo do padrio CORBA. Entretanto, devido &
grande flexibilidade permitida, implementagdes de ORB que possuem a mesma regra
de negocio diferem, refletindo em solugdes peculiares em fungéo dos fabricantes, ndo
s6 pela utilizagio de diferentes mecanismos para a obtengio das mesmas
funcionalidades, como também através do acréscimo de novas func¢des consideradas
importantes para o seu usuario final. Isso corresponde as decistes téenicas relativas,
como por exemplo: o tempo despendido por uma requisi¢@o; os niveis de seguranga ;

uso de determinados protocolos de comunicag#o.

A interoperabilidade entre objetos estd basicamente associada com uma mudanga
transparente de dominio. Considera-se dominio como um contexto em que certas

caracteristicas e/ou regras comuns sdo preservadas. Ha uma tendéncia de que esses

14

dominios sejam, basicamente, de cunho administrativo (nomes, grupos,
gerenciamento de recursos, seguranga, etc) e/ou tecnolégico (protocolos, sintaxes,
redes, etc), sendo que os mesmos ndo correspondem, necessariamente, aos limites de

um ORB instalado.

Dominios possibilitam o particionamento de um contexto em grupos de objetos que
tenham caracteristicas em comum. Um determinado objeto pode, portanto, fazer
parte de mais de um dominio, desde que satisfaga aos seus requisitos. Considera-se o
limite de um dominio, como um contexto, no qual uma determinada caracteristica

tem algum significado. Como exemplos de dominios, pode-se citar os contextos de:

e Uma referéncia de objetos;

¢ Uma sintaxe de transferéncia de mensagens;
e Um enderego;

¢ Uma mensagem de rede;

e Uma politica de seguranga;

¢ Um identificador de tipos;

e Um servigo de transacdes.

A Interoperabilidade s6 é possivel através de uma conexfio entre dominios. Para
atender ao requisito, é preciso traduzir como fazer para que um objeto Y, no ORB B,
aparega como um objeto X, no ORB A, de maneira que esta ultima seja capaz de
utilizar X da mesma forma que faria com um objeto qualquer que fosse, de fato,
implementado por ela, nem sempre de ficil implementacéo. Além disso, todas as
funcionalidades fornecidas pelo ORB B devem ser acessiveis pelo ORB A através de
X. Com isso, uma requisi¢io em X deve ser transformada numa requisi¢io em Y e,
para tanto, é preciso criar X através da passagem de Y para o0 ORB A. O objeto X
sera, entdo, um representante de Y no ORB A, recebendo a denominagio de Proxy de

Y.

Durante a conversfio da requisigio pode ser necessario o mapeamento de outros

dominios, além do definido pela referéncia de objeto. Multiplos dominios podem

15

estar sendo acessados simultaneamente ¢ cada conversfo serd igualmente necessaria

para o completo entendimento pela ORB destino.

Esta interoperabilidade entre diferentes ORBs ¢ provida pela IIOP(Internet Inter -
ORB Protocol). O IIOP corresponde a um protocolo de comunicago, com
mapeamento TCP (Transmission Control Protocol), permitindo que requisigbes
sejam enviadas para objetos distribuidos gerenciados por outros ORBs em outros
dominios (MOWBRAY, T.J.; ZAHAVI R., 1995). A Figura 2.6, abaixo, apresenta

um esquema utilizado pelo IIOP para comunicagio entre ORBs.

Cliente

(i:\;E;E;::

Implementagéég) o Implementagdes
de Objetos %ﬁé‘} de Objetos
- Legenda
O objeto —" requisigfo

“ ORB = requisigio IIOP

Figura 2.6 - IIOP - Comunicagéo entre ORBs.

O TCP ¢é um protocolo orientado a conexfo que fornece um servigo confidvel de
transferéncia de dados fim a fim. O TCP foi projetado para funcionar com base em
um servigo de rede sem conexdo e sem confirmagdo, interagindo de um lado com
processos de aplicagdes e de outro lado com protocolos da arquitetura Internet
(SOARES, L.F.G; LEMOS, G;COCHER, S, 1995)

2.5 - Persisténcia de Objetos

O estado de um objeto é armazenado em um meio nio volatil (MOWBRAY, T.J;

ZAHAVI R., 1995) como, por exemplo, em um banco de dados ou um sistema de

16

arquivos. O estado de um objeto pode ser considerado como composto por duas
partes: um estado dindmico, que existe tipicamente em memoria e ndo precisa
necessariamente existir durante o tempo de execugio objeto, e um estado persistente,
que o objeto poderia usar para reconstruir um estado dinimico. E esse estado
persistente que deve ser armazenado e gerenciado em um meio de armazenamento

persistente.

O POS (Persistent Object Service), definido no padrioc CORBA, permite que um
objeto continue existindo ao término da aplicacfio que o criou ou do cliente que o
utilizon, pois o estado do objeto pode ser salvo em um meio de armazenamentio
persistente e restaurado, se necessario. O objetivo do POS ¢ prover interfaces
comuns para os mecanismos usados no armazenamento € gerenciar estados
persistentes de objetos, portanto, tem como uma das responsabilidades principais, o
armazenamento do estado persistente de objetos, com outros servigos provendo

outras capacidades.

O ORB possui a habilidade de manter a referéncia a um objeto de forma persistente,
mas isso ndo garante que um determinado objeto esteja disponivel apenas porque a

sua referénceia ainda é valida. O POS fornece:

+ Suporte para base de dados coorporativas, incluinde bancos de dados e
bases de dados baseados em sistemas de arquivo;

o Independéncia de base de dados, isto é, uma tdnica API(Application
Program Interface) cliente independente de uma base de dados particular e
um mecanismo Unico para armazenamento ou restauragdo de objetos a serem

usados no lado do servidor.

Buscando a possibilidade de implementagio da persisténcia em diferentes meios de
armazenamento, 0 POS estabelece uma interface Gnica de objetos para muiltiplas

bases de dados apresentados na figura 2.7.

Memdéria () > -
) D -)

Interface
Unica

Servico de Objetos

Persistentes (POS)

Especializacdes

do POS
O B & O]
Arguivos Banco de Banco de Bento Qutros
Dados Dados OO0
Relacionzl

Figura 2.7 - Implementagfo de persisténcia em diferentes meios

De forma mais detalhada, apresentada na figura 2.8, o POS é formado por quatro

elementos:

e PO (Persistent Object): sdo os objetos cujos estados sfo armazenados de
forma persistente. Um objeto pode tomar-se persistente, utilizando a
propriedade de heran¢a do comportamento da classe PO, via IDL. Um objeto
persistente deve herdar ou prover um mecanismo para externalizar seu estado
quando o mecanismo de armazenamento solicitar. Essa solicitagiio ¢ feita
através de um protocolo especifico. Cada PO possui um identificador
persistente que descreve a sua localizag®o dentro da base de dados utilizando
uma string de identificagdo. Clientes tipicamente interagem com a interface
de objetos persistentes para controlar a persisténcia do objeto;

e POM (Persistent Objects Manage): ¢ uma interface independente da
mmplementag@io para operagdes de persisténcia. O POM prové um acesso
uniforme aos diferentes tipos ou instincias de servigos de persisténeia de

dados;

18

e PDS (Persistent Data Services): sio interfaces para implementagdes
particulares de bases de dados. O PDS realiza a tarefa de mover dados entre
um objeto e uma base de dados;

» Datastores: sio implementa¢es que armazenam um dado persistente de

um objeto, independente do espago de enderecamento que contém o objeto.

Aplicacao Cliente

RN
¥ m
PO FO Objetos
L Persistentes
FO FO PO (FO)
P
.
Gerenciador
de Thbjetos
Prc-t:svc:nlo PTUE%CDID Persistentes
Py (PO
e %
& Servige de Dados
DO ODMG-93 DA Persistentes
’ ‘ (FPDSs)
m B &
- Daiastores
Banco de oD BRS Basa de
Dados SQL Objetos
Slmples

Figura 2.8 - Elementos do POS

O objetivo desse servigo € guardar o estado de um objeto de forma persistente. Este
servigo ndo garante que um objeto continue disponivel e sim que seu estado possa ser
restaurado, caso seja necessario. O POS é um padrio relativamente recente que ainda
possui poucas implementacdes. Esse servigo € importante quando sdo implementadas
aplicacdes tolerantes & falhas ou na migraciio de sistemas legados. Uma das
principais vantagens dessa especificagdo € a possibilidade de guardar o estado do
objeto em diferentes meios de armazenamento. Por outro lado, o controle dessa

diversidade nfio estd muito bem tratado no padrio. Existe a possibilidade de um

19

objeto persistente se comunicar tanto como Gerenciador de Objetos Persistente
quanto diretamente com o Servigo de Dados Persistentes. A comunicagio com o
ultimo se daria através do componente Protocolo que nfio estd completamente

especificado.
2.6 - Replicacgéio de Objetos

A replicagdo de componentes em sistemas distribuidos normalmente ¢ utilizada para
torna-lo mais confidvel. A replicagfio envolve a manutengio da consisténcia entre as
multiplas copias, isto €, é preciso garantir que todas as cOpias possuam o mesmo
estado. As duas politicas de replicagfio mais conhecidas sdo replicagdio ativa, onde
todas as cdpias do objeto replicado tratam uma requisicio e retornam um resultado e
replicagdo passiva, onde apenas uma copia, geralmente denominada primaria,

executa os pedidos ¢ atualiza as outras copias.

Uma possibilidade de implementar replicagio ¢ a utilizagio de um servigo de
comunica¢io em grupo, existindo trés abordagens possiveis de replica¢des utilizando

a especificagio CORBA:

e Integration Approach: consiste na integragiio de um sistema de
comunica¢do de grupo existente dentro de um ORB. Essa abordagem ¢ facil
de desenvolver, pois nio é preciso desenvolver uma nova camada de
comunicagio em grupo, sendo transparente para o cliente;

e Interception Approach: consiste na interceptagio de mensagens
relacionadas a um ORB existente ¢ o0 mapeamento dessas mensagens para um
pacote de comunicagdo em grupo. A principal vantagem, ¢ que essa
abordagem n#o necessita de quaiquer modificagiio no ORB;

e Service Approach : consiste em prover a comunicagio em grupo como
um servico de CORBA ao lado do ORB. Essa é a abordagem com maior
conformidade ao padrio CORBA, ela modela a replica¢fio no mesmeo nivel de
outras funcionalidades, como persisténcia e transagdo, incluidas como

Servigos.

20

A implementagio de replicagio de objetos é importante para garantir requisitos de
tolerfincia a falhas ¢ a disponibilidade dos objetos. Existem vérias propostas de
implementagdo, porém considera-se a implementagio da replicagdo como um servigo
CORBA (CORBA, 2002). Existe atualmente um grupo na OMG buscando propostas
de padronizagdo de servigos para toleréncia & falhas, onde, possivelmente, a

replicagéo serd de alguma forma tratada.

2]

3 - ARQUITETURA EJB DA PLATAFORMA J2EE

3.1 - Historico

Ha oito anos que a plataforma Java foi criada, e uma € das plataformas de
desenvolvimento de sistemas mais discutidas da atualidade. Em seu langamento, os
programas construidos, Applets (APPLETS, 2002), tinham foco de execugdo nos

navegadores de Internet.

Applets sdo programas carregados a partir de um servidor de Internet e sdo
executados em um navegador no computador cliente (requisitante). Os Applets, em
geral, dependem dos navegadores que os suportam para serem executados, mas
podem ser executados também com uma ferramenta chamada
AppletViewer(APPLETS, 2002). Como sdo executados através de um navegador,
consequentemente, também tem acesso as mesmas capacidades deste: graficos
sofisticados, desenho e pacotes de processamento de imagens, elementos de interface

de usudrio, servigo de rede e tratamento de eventos.

Executando de forma completamente diferente e dependendo dos navegadores, os
Applets foram alvo de vérias criticas contra a adogio da plataforma Java. Alguns
fabricantes de plataformas concorrentes n3o haviam percebido ¢ que enquanto os
codigos executados em clientes ndio correspondiam as respectivas funcionalidades, a
plataforma Java estava sendo utilizada, de forma eficaz, os servidores de aplicages,

principalmente os servidores de Internet.

Inicialmente, a plataforma Java utilizada em servidores de Internet estava limitada ao
Serviet Engine(SERVLET,2002), mecanismo que permite a construgéo de sistemas

executados em servidores de Internet utilizando CGI (Common Gateway Interface).

O CGI é um protocolo de comunicagio através do qual o servidor de Internet

gerencia a transferéncia de informag8es entre um programa residente no servidor ¢

22

um navegador de Internet utilizado no computador cliente.O CGI é um protocolo ¢

ndo um programa executivel capaz de realizar alguma coisa.

Originalmente, o modelo de componentes da plataforma Java foi representado pelo
JavaBeans, porém com o crescimento e utilizagfio da plataforma surgiu a necessidade
de uma arquitetura para componentes em ambientes distribuidos, surgindo a
arquitetura EJB. O modelo JavaBeans foi a agregado a EJB, que passou a representar
a arquitetura de componentes para o desenvolvimento ¢ implantagio em ambientes
distribuidos para plataforma Java. Desde sua criagio, ha dois anos, varios

fornecedores vém se interessando por ela, isto porque (EJB, 2001):

e Os servidores de EJB fornecem sustentacdio automaética para servigos tais
como transagdes, seguranga e conectividade da base de dados;

e O Cédigo é escrito uma tnica vez e executado em qualquer sistema
operacional (Write Once, Run AnywhereTM);

e Simplifica o desenvolvimento dos componentes;

e Permite acesso compartilhado por multiplos usuarios.

Para entender melhor este interesse, pode-se tomar como exemplo, o gerenciamento
de uma transagiio. No passado, os desenvolvedores tinham que escrever e manter o
c6digo de geréncia de transagBes, ou confiar em um sistema de geréncia de
transagdes adquirido. A arquitetura EJB permite que os componentes simplesmente
participem nas transagdes, apenas especificando objetos e métodos que sdo
transacionais. Os servidores de EJB abstraem os detalhes de geréncia das transagoes,
assim os desenvolvedores podem concentrar seus esfor¢os no desenvolvimento das

regras de negdcio.

A arquitetura EJB é uma das muitas especificagdes de arquiteturas contidas na
plataforma J2EE. E normal confundir as duas, porque uma grande parte dos
conceitos da plataforma J2EE origina-se da arquitetura EJB. A figura 3.1, na proxima
pagina, apresenta a plataforma J2EE representada no modelo de trés camadas

(apresentag¢fio, negocio e dados).

23

O modelo de trés camadas foi proposto, principalmente, para melhorar a eficiéncia
de busca e recupera¢iio de informacio Este modelo pode ser visto como um caso
particular de um tipo de coordenagfio com fungles determinadas, ou seja, cada

camada tem seu papel pré-determinado na solugdo do problema.

A plataforma J2EE é um conjunto de especificagdes € um guia de praticas, que juntos
permitem o desenvolvimento, instalagdio, execugdo ¢ gerenciamento de aplicagSes
com n-camadas. A plataforma J2EE expande a plataforma Java, sendo completa,
robusta, estavel, segura e de alto desempenho, voltada para o desenvolvimento de

solugdes corporativas.

Cliente HTMU Cliente HTML,

Camada de '
Apresentagio
1y H
Firgw
Servidor

Cliente Javain Ap:LaIi‘éa "
WebBrow _
I HTML/DHTML/XM |
CORB RMI/IO RMI/II mm i’ «f
TSGR e Servidorde
Camada de Bibliotecas escritas
Negdcio EJB Session r%u:ia.sctonou
etc

Conector

Camada de - -
Dados

Banco de Sistemas

(ERP.

Figura 3.1 - Plataforma J2EE em fun¢do do modelo de trés camadas(MATOS, J. P.,
2002)

24

Na figura 3.1, pode ser observado que a arquitetura EJB ¢ direcionada para a camada
de negdcio, fornecendo recursos de infra-estrutura € servigos necessarios para um
ambiente distribuido. Basicamente, a camada de negocios ¢ responsavel entre outros
servigos por controlar e mediar as outras duas camadas (apresentacéo e dados).

3.2 - ARQUITETURA EJB

A figura 3.2 apresenta os componentes da arquitetura EJB mais detalhadamente.

Servidor de EJB

A interface EJBObject intercepta todas as
chamadas de métodos e implementa
transagdes, gerenciamento de estado,
persisténcia e servigos de seguranga baseado

nos parametros de instalagdo.

métodos

cria
encontra
remove

A interface EJBHome implementa todos os
servigos de ciclo de vida do Bean

Figura 3.2 - Componentes da arquitetura EIB(MATOS, J. P, 2002)

3.2.1 - Cliente EJB

O Cliente EJB é o responsavel por encontrar no Servidor EJB o recipiente
(EJBContainer), que contém o componente de uma determinada operagdo. Através
de JNDI (Java Name and Directory Interface), apresentado a seguir, o recipiente faz

o mapeamento deste componente, omitindo os detalhes de execugfio. A seguir, €

25

apresentado um exemplo de parte de codigo em linguagem Java, que implementa

uma classe cliente realizando um mapeamento através do JNDI.

public class Client

{
public static void main(String [] args)
{
try
{
Context jndiContext = getlnitialContext();
Object obj = jndiContext.lookup("java:env/ejb/user");
User user = (User)javax.rmi.PortableRemoteObject.narrow(obj,SitcHome class);
Info info = user.create(1);
site.setName("Joao™);

UserPK pk = new UserPK(};

pkid=1;

Info info_2 = user.findByPrimaryKey(pk);
System.out.println(info_2.getName());

)

catch (java.rmi.RemoteException re){re.printStack Trace(); |
catch (javax.naming.NamingException ne) {ne.printStackTrace(}. }
catch {javax.ejb.CreateException ce){ce.printStack Trace(); }
catch (javax.ejb.FinderException fe){fe.printStackTrace().}

——

A principal finalidade do JNDI ¢ fornecer um servigo de nomes, permitindo a
associagio de um nome, ou uma outra representagdo alternativa mais simples, a
recursos computacionais tal como, enderegos de memoria, de rede ¢ referéncias

codigos em geral. As duas fungdes basicas sgo.

e Associar um nome a um recurso;

e Localizar um recurso a partir de seu nome.

Como exemplo, suponha um sistema de arquivos, indicando a ligagdo do caminho
que associa a arvore de diretérios, onde se localiza um arquivo, 2 um bloco de

memoria.

26

c:\temp\dados.txt 16A0:0C00

O INDI é uma extensdo da plataforma Java, que fornece infra-estrutura para
construcio de sistemas, que necessitam da associa¢do de nomes a recursos

computacionais (J2EE, 2002).

3.2.2 - Servidor EJB

O Servidor de EIB € o responsavel pela infra-estrutura de gerenciamento, tal como,
controle de transagdes, persisténcia de objetos, seguranga, etc. Além disso, outros
requisitos importantes para um ambiente distribuido sdo suportados, tal como,

escalabilidade, portabilidade, incorporados da plataforma Java.

No Servidor EJB enconiram-se 0s Beans, componentes desenvolvidos ou de
fornecedores, que ficam armazenados especificamente no EJBContainer, podendo

ser definido como recipiente e/ou repositorio de Beans.

As fungdes principais do EJBContainer sfo de assegurar que a persisténcia, transagao
e seguranga sejam aplicadas corretamente a toda operagao que um Cliente EJB faga a

um determinado Bean.

A figura 3.3, localizada na préxima pagina, apresenta o funcionamento do

EJBContainer.

27

EJE Container

client request

client]
e | Tramsaction Management

~——»| Persistence Management

| Security Managemmant

EIBContext, JHNDI EXC

Eean
Callback Meaihods

pu—r_)
)

E.JEB Containers manige
enterprise beans at rundime

Figura 3.3 - EJBContainer (EJB,2001)

Para reduzir a utilizagio de processador e meméria da aplicag@o, o EJBContainer cria
um pool de recursos ¢ gerencia o ciclo de vida de todos os Beans, sendo que, mais de
um Bean pode ser gerenciado simultaneamente. Quando um Bean ndo estd sendo
utilizado, o EJBContainer o coloca no pool para ser usado por outro cliente, €

somente o carrega novamente quando for necessario.

Além disso, o EJBContainer pode gerenciar conexdes a banco de dados € acesso a
outros Beans. Um Bean pode interagir com o EJBContainer de trés formas

diferentes:

» Meétodos CallBack: todo Bean implementa uma interface a EJBHome que
define diversos métodos chamados callback. Cada método callback €
invocado em diferentes momentos no ciclo de vida do bean, tal como
ativagio de um bean, gravagio de dados, remogio de um bean da memoria,
entre outros. Deve-se saber quando cada método é chamado e qual a sua
utilizagdio para implementar uma aplicag@io de maneira correta e eficiente.

» EJBContext: todo Bean deve instanciar um objeto do tipo EJBContext,

que é a referéncia direta para o EJBContainer. Esse objeto possui métodos

28

para obter informagdes de uma requisi¢do, tal como a identidade do cliente, o
estado de uma transa¢do ou obter referéncias remotas para si mesmo.,

¢ JNDI: todo Bean automaticamente tem acesso a um sistema especial de
nomes, denominado ENC(Enviroment Naming Context). O ENC ¢
gerenciado pelo EJBContainer e acessa os Beans usando JNDI. Com isso, o
Bean pode ter acesso a outros Beans e a propriedades especificas de um

Bean.

Os Beans sfo desenvolvidos através da linguagem Java, ¢ sfio responsaveis por
realizar determinadas operagdes deniro do seu contexto. Para o desenvolvimento de
um Bean é necessario seguir um padrio, que tem como objetivo manter

compatibilidade de vers6es futuras do JavaBeans.

No servidor, o Bean tem seu tempo de execugdo limitado pelo cliente que o
requisitou ou entfio, quando o servidor deixa de funcionar. Caso esteja sendo
compartilhado por dois clientes, o seu tempo de execugéo limitado a requisi¢do do
Gltimo cliente solicitante, Os Beans com o comportamento acima, sio tambem

denominados Beans de sess#o, as principais caracteristicas desses Beans sao:

Encapsular operagdes complexas com as entidades do sistema;

Retirar o gerenciamento do negdcio do cliente;

Simplificar a0 méximo o cédigo do cliente. A seguir, € apresentado um
exemplo de cédigo em linguagem Java, que define uma interface remota para um

Bean de sesséo.

public interface TravelAgent extends javax.ejb.EJBObject
{
public void setCruiseID(int cruise)
throws RemoteException, FinderException;
public int getCruiselD()
throws RemoteException, IncompleteConversationalState,
public void setCabinID(int cabin)
throws RemoteException, FinderException;
public int getCabinID()
throws RemoteException, IncompleteConversationalState;
public int getCustomerID()

29

throws RemoteException, IncompleteConversational State;
public Ticket bookPassage(CreditCard card, double price)

throws RemoteException,IncompieteConversaticnalState;
public String [] listAvailableCabins(int bedCount)
throws RemoteException,IncompleteConversationalState;

;

Existem dois tipos de sessfio que podem ser implementadas para esses Beans:

o Stateful: usada quando € preciso que a sesséo armazene algum valor. Este
tipo tem a seguinte caracteristica, apenas um tnico cliente acessa um unico
Bean e durante a requisi¢fo, os dados do Bean sdo armazenados na sessdo. Os
dados serio apagados somente quando o cliente remover o Bean. Hssa
abordagem deve ser implementada com cuidados extras, esta implementagéo
afeta diretamente o desempenho do sistema;

o Stateless: ndo mantém as informagdes do Bean em sessdo, pode ser
compartilhado entre diversos clientes, nesta abordagem o desempenho € mais

otimizado.

Assim, o Bean de sessio pode ser comparado a verbos porque normalmente
executam uma aglo qualquer, que pode ser: chamar um outro Bean; finalizar uma

compra; calcular um desconto e etc.

Existem também os Beans persistentes, sdo usados geralmente para controlar
transagBes, seja com um banco de dados ou com outros Beans, as principais

caracteristicas sio:

e Possuir um tempo de execugdo longo,
e Permitir acesso compartilhado por multiplos usudrios;

e Fornecer uma visio em forma de objeto dos dados de um repositério.

A seguir, é apresentado um exemplo de parte de um codigo que demonstra a
construcdo de um Bean persistente. A classe ProductEJB implementa as regras
impostas pela interface EntityBean que define os métodos basicos de um Bean

persistente,

30

public class ProductEIB implements EntityBean

{
public String productld;

private EntityContext context;
private double price;
private String description;

public void setPrice(double price)

{

this.price = price;

}

public String ejbCreate(String productld, String description,
double price) throws CreateException

{
if (productld == null)
{
throw new CreateException();
'

this.productld = productld;
this.description = description,
this.price = price;

return null;

}

public void ejbRemove() { ... }

public void ejbLoad() { ... }

public void ejbStore() { ... }

public void unsetEntityContext(} { ... }

public void ejbPostCreate(String productld, String description,
double balance) { ... }

Existem dois modos de implementagdio de persisténcia para esses Beans:

e BMP (Bean Manager Persistence): o desenvolvedor escreve o cédigo
necessario, por exemplo, para acessar o banco de dados. Este modo de
implementagio pode acarretar alguns inconvenientes, tal como, 0 aumento

da possibilidade de erros e de tempo de desenvolvimento;

3

e CMP (Container Bean Persistence): o EJBContainer gera
automaticamente, por exemplo, o c¢ddigo de acesso ao banco de dados. Este
modo de implementagdo pode permitir um aumento da produtividadeporém,
o programador deve estar atento ao numero de requisigbes que o
EJBContainer faz ao banco de dados, pois € comum realizar requisigdes que

ndo sdo necessarias.

Vérios clientes podem acessar um Bean persistente simultaneamente, porém todas as

operacgbes de escrita devem ter o suporte de transagfio garantindo a integridade.

Resumindo, no servidor EJB, o controle das requisi¢des do cliente ¢é realizado pela
implementagio da interface EfBObject, que intercepta as requisi¢des do cliente e
chama os métodos corretos nas instdncias dos Beans especificos. O acesso as
instincias dos Beans é feito através da implementacdo da interface EJBHome, que
representa uma interface para cada Bean residente no EJBContainer. Um detalhe
importante ¢ que a EJBHome de todo Bean tem que satisfazer as regras impostas
pela interface Remote do pacote RMI (Remote Method Invocation) (RMI,2002), o
que possibilita que qualquer Bean possa ser acessado por qualquer cliente. Na figura
3.4, localizada na préxima pagina, ¢ apresentado um diagrama de seqiiéncia que

demonstra o funcionamenio dos componentes da arquitetura EJB.

32

Figura. 3.4 — Diagrama de Segiiéncia do funcionamento dos componentes EJB

EJE Client JNDI Server EJB Server EJB Container En!erprise
avaBean
|[—L up EJB _.II | | |
{F
o Lookup EJB —p-|| | I
|— ookup
| Allocate Cortai | |
| | [rides e Co aaner—p] |
restel) .
l_ l I | Etgewines1na|nn:e() |
setSessionContext(
| l l |— efaCreste])
I-———invoke method getSlockPrice("CUP").—pI
! I
| | | l—getStockprice("CUP")a-l
I: | returns stnc:k|price of "CUPL | |
| [I l—eijassivme()—-|
Activate(

| l I r_a-l)——I
| [remove— I ._.l |
| [| [—eijemove()-—-l
| | |

Para melhor entendimento do diagrama, este ¢ descrito passo a passo:

1° passo: o Cliente EJB solicita servigo para o Servidor JNDI,

2° passo: o Servidor de JNDI faz o mapeamento do Bean responsavel pelo
servigo solicitado pelo cliente;

3° passo: o Servidor EJB referencia o Container, onde se encontra o Bean para o
Servidor de INDI,

4° passo: o cliente inicia uma nova sess@o invocando o método create(),

5° passo: no Container uma nova instincia do Bean ¢ criada, e a partir desta, ¢
invocado o método newlnstance(). Em paralelo, é realizada a invocacdo do
método setSessionContext(), que inclui informacgles sobre o recipiente, o
ambiente e a identidade do cliente que realizou a chamada. Finalizando, ¢ feita a
invocagio do método ejbCreate(), utilizando os pardmetros da entrada emitidos
pelo cliente, concluindo a requisigio;

6° passo: o Cliente invoca o método getStockPrice(“CPU”}) ;

33

7° passo: a interface EJBObject invoca o método getStockPrice(“CPU”) no
Bean;

8° passo: o Bean realiza o processamento e retorna a requisicao;

9° passo: no Container o EJBObject invoca o métedo ejbPassivate() para o Bean,
esse método tem como implementacio a liberagio do Bean para novas
requisigdes;

10° passo: o Bean invoca o método ejbActivate() na EJBObject, esse método é
responsavel por emitir uma sinalizagio para o EJBObject, informando que o
Bean esta a disposi¢fio de novas requisigdes;

11° passo: o Cliente invoca o método remove() no Container, destruindo a
instancia do Bean que foi alocado com o comando create();

12° passo: a EJBObject invoca 0 método ejpRemove() para o Bean, destruindo a

instdncia do Bean,

O RMI é um conjunto de regras de comunicagfo, implementadas em um pacote de
classes (java.rmi.*),que facilitam o desenvolvimento de aplicativos distribuidos em
linguagem Java (J2EE, 2002). O desenvolvimento de aplicagdes distribuidas
utilizandoRMI ¢é mais simples que o desenvolvimento através do padrido
emissor/receptor dos dispositivos de rede, conhecido usualmente como Socket, uma
vez que niio é necessario projetar um protocolo de comunicagdo entre o emissor € 0

receptor.

A seguir, é apresentada uma forma de se construir uma aplicagdo utilizando RMIL
Neste exemplo, o aplicativo permite um cliente transferir qualquer tipo de arquivo
texto de uma maquina cliente para um servidor. Os passos desta construgéo séo

apresentados a seguir;

1° passo: definir a interface remota, especificando os métodos fornecidos pelo

servidor e acessados pelo cliente remoto.

public interface FileInterface extends Remote

{
public byte(] downloadFile(String fileName)

34

throws RemoteException;

A interface FileInterface.java define um tnico método, o downloadFile, que recebe
uma String como argumento (0 nome do arquivo no servidor remoto) e retorna os

dados contidos neste arquivo em um Array de Bytes.

As caracteristicas da interface FileInterface sio:

e Deve ser declarada como piiblica para que os clientes sejam capazes de¢
carregar objetos remotos que a implementam;

e Deve entender a interface Remote do pacote java.rmi, que define os
métodos de acesso a objetos remoto;

¢ Os métodos dessa interface devem ser capazes de transmitir uma excegdo
do tipo java.rmi.RemoteException, possibilitando que o cliente possa tratar e

tomar a decisfio adequada em fungfio da mensagem da exce¢ao.

2° passo: implementar a interface remota;

Nesse passo, ¢ implementada a interface FileInterface, que extende a classe
UnicastRemoteObject, do pacote Java.rmi.*, indicando que a classe Filelmpl.java &

utilizada para criar um simples e ndo-replicado objeto remoto.

public final class FileImpl extends UnicastRemoteObject
implements FileInterface
{
public Filelmpl() throws RemoteException
{
super();
}

public byte[] downloadFile(String fileName)

{
try

{
File file = new File(fileName);

byte buffer[] = new byte[(int)file.length()];
BufferedInputStream input = new
BufferedInputStream(new FileInputStream(fileName));

35

input.read(buffer,0,buffer.length);
input.close();

file = null;
imput = null;

return buffer ;
catch(Exception e)

e.printStack Trace();
return null;

}
}
}

3° passo: desenvolver o servidor,

public class FileServer

{

public static void main(String argv(])
{
if(System.getSecurityManager() == null)

{
System.setSecurityManager(new RMISecurityManager(});

}
try
{
Filelnterface fi = new FileImpl("FileServer"),

Naming.rebind("//127.0.0.1/FileServer", fi);
}

catch(Exception)

e.printStackTrace();

;
}
}

A classe FileServer.java representa o servidor, a chamada do método rebind
(“//127.0.0.1/FileServer”,fi), na classe Naming, assume que o registro RMI esta
sendo executado sobre a porta padriio 1099. Caso seja necessario executar o registro
RMI sobre uma porta diferente, nfio ha restrigdes, desde que a essa esteja disponivel,

por exemplo, se o registro RMI ¢ executado na porta 4500 a declarag@o se torna:

Naming.rebind (*//127.0.0.1:4500/FileServer” fi)

36

Porém, para que o servidor funcione ¢ necessario:

e Criar uma instincia do RMISecurityManager e instala-la;
¢ Criar uma instincia do objeto remoto FileImp, neste exemplo;

e Registrar o objeto criado com o registro RMI.

4° passo: desenvolver o cliente;

O cliente requesita os métodos especificados na interface remota Filelnterface. Para
isto, o cliente deve primeiro obter uma referéncia para o objeto remoto do registro
RMI, uma vez que esta referéncia ¢ obtida, o método downloadFile ¢ chamado. A
implementagiio do cliente é apresentada a seguir, na qual o cliente aceita dois
argumentos na linha de comando: o primeiro ¢ o nome do arquivo remoto a ser
transferido e o segundo é o endereco do computador a partir da qual o arquivo serd

copiado, ou seja, da maquina onde se encontra o servidor.

public class FileClient
{ public static void main(String argv[])
{ if(argv.length = 2)
;System.exit(O);

try

{
String name = "//" + argv[1] + "/FileServer";
FileInterface fi = (FileInterface) Naming.lookup(name);
byte[] filedata = fi.downloadFile(argv[0]);
File file = new File(argv[0]);
BufferedOutputStream output = new

BufferedOutputStream(new FileOutputStream(tile.getName())):

output.write(filedata,0,filedata.length);
output.flush();
output.close();

}

catch(Exception e)

{

37

e.printStack Trace();
}
}
}

3.2.3 - Desenvolvimento de componentes para EJB

As caracteristicas de uma arquitetura estdo relacionadas as linguagens de
desenvolvimento que podem ser utilizadas na construgio de seus componentes. No
caso da arquitetura EJB, muitas funcionalidades e padrbes sdo incorporados da
linguagem Java, que & utilizada na construgfo dos Beans. A seguir sdo apresentadas

algumas dessas caracteristicas.

3.2.3.1 — Linguagem Java

A linguagem Java originou-se como parte de um projeto de pesquisa que visava a
criagio de um software avangado, para atendera uma extensa variedade de maquinas
conectadas através de redes e sistemas distribuidos. O objetivo inicial do projeto era
desenvolver um ambiente operacional pequeno, confiavel, portavel, distribuido e que
operasse em tempo real. Inicialmente, a linguagem escolhida foi C++. Porém, com o
passar do tempo, as dificuldades encontradas com C-++ aumentaram até o ponio em
que as restrigdes s6 poderiam ser resolvidas criando uma linguagem completamente

nova.

A linguagem Java foi criada tendo como base a linguagem C+, foi projetada para
atender a vérios requisitos desejiveis em uma linguagem de programagéo, como por
exemplo, confiabilidade, em fungdo do gerenciamentc de memoria que resulta em
um ganho de eficiéncia, e redigibilidade, por eliminar alguns conceitos do C++ que

dificultavam a reutilizagio de cédigo.

A documentagio da linguagem Java fornecida pela Sun Microsystems, empresa
responsavel pela criagio e desenvolvimento da linguagem, utiliza as seguintes

palavras para defini-la (JAVA,2002):

38

« Simples: uma caracteristica marcante da linguagem Java € a simplicidade,
como conseqiiéneia pode ser utilizada sem um treinamento intenso, ou larga
experiéncia anterior. Desenvolvedores especializados na linguagem C++ tem
uma répida compreensio de Java devido 4 sua semelhanga. Java omite muitos
termos poucos usados e operagdes confusas em C++ que trazem mais
complicagdes que beneficios;

e Orientada a Objeto: os programadores podem reutilizar cddigo, utilizar
bibliotecas de terceiros com protegdo e encapsulamento, e adicionar
funcionalidades as existentes;

o Robusta e Segura: durante o processo de desenvolvimento da linguagem
Java, buscou-se a construgio de uma linguagem para escrita de programas
confiaveis. A linguagem enfatiza a verificagio de possiveis erros, em tempo
de compilagiio, e realiza verificagio dindmica, em tempo de execugio,
eliminando situa¢8es que podem gerar erros;

e Arquitetura Neutra: a linguagem ¢& projetada para suportar aplicagBes
distribuidas em diversos ambientes em rede. Em tais ambientes, ¢ possivel a
execugdo de aplicagdes em diferentes tipos de mdaquinas. Em varias
plataformas de hardware, as aplicagdes podem ser executadas utilizando
recursos de diferentes sistemas operacionais e operar interagindo com outras
linguagens de programag#o. Isto & possivel devido a arquitetura concebida,
onde a linguagem gera um cédigo bindrio, utilizando uma JVM (Java Virtual
Machine), ou seja, um sistema operacional neutro e portavel, que ndo requer
alteracdes;

e Portavel: como o tamanho dos tipos numéricos ¢ fixado, sdio eliminadas
algumas restrigdes, porque os dados bindrios sdo armazenados de acordo com
a defini¢fo de seu tipo;

e Interpretada: o interpretador da linguagem pode executar o c6digo binario
Java, diretamente, em qualquer sistema operacional para o qual exista uma

JVM compativel.

A plataforma em linguagem Java utiliza um conjunto de pacotes de classes basicas

tal como, controle de entrada e saida de dados, graficos, conexdes e etc. Outro ponto

39

importante, dentro do contexto proposto para facilitar o desenvolvimento de
sistemas, é o recurso de controle de meméria proporcionado pela JVM, conhecida no
contexto da plataforma J2EE como JRE(Java Runtime Enviroment). A partir do
momento que o sistema é executado, o GC (Garbage Collector) da JVM, assume
todo o controle da memoria usada pelo sistema, e assim, o desenvolvedor ndo precisa

despender tempo implementando-o.

O GC é um mecanismo seguro de liberagio e aloca¢do de memoria incorporado na
JVM. Por exemplo, 3 medida que uma area de memoria € necessaria, o GC assume a
tarefa de libera-la. O gerenciamento de memdria, quando efetuado diretamente pelo
desenvolvedor, torna o programa mais eficiente em termos de desempenho, mas ao
mesmo tempo existem restri¢des, obrigando-o a alocar e liberar meméria quando
assim é solicitado. Esse tipo de abordagem aumenta o risco de execugio do sistema,

sendo chamado de codigo inseguro.

A linguagem Java utiliza uma ferramenta externa chamada
Javadoc(JAVADOC,2002), que pode gerar paginas HTML com documentagdo, a
partir de marcagdes especiais colocadas no cédigo Java. A documentaco de codigo ¢
muito importante no processo de desenvolvimento de software, pois € utilizada como

um guia para consulta rapida.

A figura 3.5, localizada na préxima pégina, apresenta o processo de compilaggo e

execucdo de uma aplicago Java Stand Alone (isolada).

40

Gera codigo compilado,
que pode ser executado em

2 Javac s um sistema operacional
Cadigo Fonte (Compﬂador JaVa) diferente do que foi
(.Java) = compilado, dependendo

apenas da existéncia de
uma JVM para este.

Cédigo e _
compilado - Just-in-Time compiler
(.Class) L (Interpretador Java)

O interpretador Java
e responsdvel pela
traducdo do codigo
compilado Java
(Byte Code) para a
JVM

Aplicacdo executavel

Figura 3.5 — Processo de compilagio e execugdo de aplicagdes Java Stand Alone

A seguir, s#io apresentados alguns exemplos de implementacdes de componentes para

arquitetura EJB através da linguagem Java.

1° exemplo: interface Object,

public interface Converter extends EJBObject
{
public double dollarToYen(double dollars)
throws RemoteException;
public double yenToEuro(double yen)
throws RemoteException;

i

2° exemplo: interface Home;

public interface ConverterHome extends EJBHome —’
{

Converter create()
throws RemoteException, CreateException;

}

3° exemplo: classe Bean;

| public class ConverterEJB implements SessionBean

41

public double dollarToYen(double dollars)

{
return dollars * 121.6000;

}

public ConverterEIB() {}

public void ejbCreate() {}

public void ejbRemove() {}

public void ejbActivate(} {}

public void ejbPassivate(} {}

public void setSessionContext(SessionContext sc) {}

}

4° exemplo: classe Cliente;

import Converter;
import ConverterHome;

Context initial = new InitialContext();
Object objref = initial.lcokup("MyConverter"),

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,
ConverterHome.class);

Converter currencyConverter = home.create ();
double amount = currencyConverter.dollarToYen(100.00});

A simplicidade das construgdes, que pode ser observada nos exemplos acima
apresentados, onde as implementagdes de controle, basicamente, estdo prontas
através de uma extensio € possivel incorpord-las ao cddigo que esta sendo
desenvolvido. Desta forma, o desenvolvedor pode concentrar-se na construcdo das
regras de negdcio do sistema. Assim, pode-se dizer que a linguagem Java constitui
um diferencial importante, em fung¢fo das vantagens que séio proporcionadas durante

a construgfio e nas possiveis manutengdes de componentes ¢ servigos.

3.2.3.2 - Web Services

Pode-se definir um Web Service como um software, que conhece a comunicagio
entre tipos diferentes de software em um ambiente distribuido. Um Web Service

deve seguir as seguintes caracteristicas:

42

e Descrigio: expor ¢ descrever a si mesmo para outras aplicagdes,
possibilitando a compreensdo do servigo que executa,

e Localizagdo: pode ser localizado por outras aplicagbes via um diretorio
remoto, se o servigo estiver registrado neste diretdrio;
e Requisigiio Padronizada: pode ser invocado pelas aplicagdes utilizando-

se de protocolos padrio;
s Resposta Padronizada: deve retornar uma resposta pelo mesmo protocolo

sob o qual foi invocado o servigo.

Enfim, deve fornecer facilidades de localizagdo, compreensdo, utilizagdo e
comunicagdo. Estas facilidades podem ser implementadas através de APIs

especificas da plataforma J2EE e como conseqiiéncia, utilizadas na arquitetura EJB.

A plataforma J2EE possui um conjunto completo de APIs, para o desenvolvimento
de Web Services. Esse conjunto permite aos desenvolvedores, colaboradores e
vendedores de ferramentas construir aplicagdes e produtos com seguranga, geréncia
distribuida de transagdio e geréncia de conexdo, que sdo essenciais para esse tipo de

servigo(WEBSERVICE,2002).

A API JAXP, por exemplo, permite a construgio de aplicagbes que utilizam XML
(Extensible Markup Language) na execugdo de seus servi¢os. Todo processamento
de XML pode ser recalizado através dessa API, agilizando o processo de

desenvolvimento dos Web Services.

O XML é uma linguagem de marcagio de dados que prové um formato para
descrever dados estruturados, facilitando declaragbes mais precisas do conteudo e
resultados mais significativos de busca através de multiplas plataformas

(XML,2002).

43

Na figura 3.6 é apresentado um exemplo de interag#o entre emissor, intermediario ¢

receptor utilizando-se a linguagem XML.

XML | XML |
terme- '
| o | 'nte LDED__,
- Sender dlaryD Receiver |

XML XML b

o Receiver | o [TImm Interme- 1| Sender
diary |
=]

L — —

Web services message patterns are constructed
out of senders, receivers, intermediaries, and headers

Figura 3.6 - Intera¢do entre emissor, intermedidrio e receptor através de XML

(WEBSERVICES,2002)

Qutra API importante é a JAXM, que permite enviar mensagens com SOAP(Simple

Object Access Protocol) em ambientes distribuidos.

SOAP representa um protocolo de invocagio remota de métodos de objetos baseado
em XML (SOAP,2002). O SOAP é a base dos Web Services, ¢ um protocolo que
permite que empresas troquem informagdes em XML de uma forma simples, segura

e robusta.

Assim, com base nas APIs da plataforma J2EE, é possivel construir servi¢os para um
ambiente distribuido de maneira simples, atendendo os padrSes de interoperabilidade

com outras plataformas.

44

4 - ARQUITETURA DA PLATAFORMA .NET
4.1 - Historico

Em 22 de junho de 2000 a Microsoft anunciou a plataforma .NET (pronuncia-se “d6t
NET”), geracdo de softwares e aplicativos para a Internet, Este projeto € considerado
pela Microsoft como o mais ambicioso desde o langamento do sistema operacional

Windows, hd mais de uma década.

O projeto ¢ de tal importancia que Bill Gates afastou-se da presidéncia da Microsoft,
dedicando-se tempo integral a esse projeto, na posigdo de principal arquiteto de
software da Microsoft. Uma significativa parcela dos recursos profissionais,
tecnolégicos e financeiros da Microsoft estdo sendo direcionados para o

desenvolvimento dessa plataforma(MICROSOFT,2002).

A NET é uma plataforma de desenvolvimento para miltiplos ambientes baseados
em XML. Essa plataforma tem como fundamento permitir o desenvolvimento de
diferentes tipos de aplicagdo, permitindo a utilizagdo de uma variedade de linguagens
de programagdo, além de integrar componentes desenvolvidos em linguagens

diferentes.

A seguir, as figuras exemplificam os componentes da plataforma NET ¢ a hierarquia

entre eles.
Dispositivos

S0E58 o

Figura 4.1 - Dispositivos (NET,2002).

No topo da hierarquia, encontram-se os miltiplos dispositivos que acessam as
informacdes de dispositivos clientes, tais como microcomputadores ¢ telefones

celulares inteligentes.

45

Web Services

Figura 4.2 - Web Services (NET,2002).

No segundo nivel da hierarquia, figura 4.2, encontram-se os Web Services, software

desenvolvidos pela Microsoft.

Passport/Seguranca

- o

Figura 4.3 — Passport / Seguranga (NET,2002).

No terceiro nive! da hierarquia, figura 4.3, encontram-se os servicos de seguranga ¢ o

servigo de autenticagfio de usudrios, de acordo com o padrio da Microsoft, o Passport.

Web Sarvicas Enabler

CH

Figura 4.4 — Web Services Enabler (NET,2002).

(4)

No guarto nivel da hierarquia, figura 4.4, encontram-se os servigos especificos para
aplicagdes corporativas, desenvolvidos para atender requisitos de cobranga, de
acordo com as necessidades do mercado, de forma a permitir maior flexibilidade aos

sistemas.

Servers

©

46

Figura 4.5 — Servers (NET,2002).

No quinto nivel da hierarquia, figura 4.5, encontram-se diversos softwares que
formam a infra-estrutura béasica de suporte aos Web Services e interligam a

plataforma .NET com o sistema legado das empresas.

Em conjunto com a plataforma .NET, a Microsoft criou a linguagem C# (pronuncia-
se “C Sharp”), tornando-se uma linguagem de referéncia e um diferencial para a
plataforma. Embora exista a possibilidade de utilizagdo de diferentes linguagens
através da NET,deve-se considerar a adogio do C# como linguagem principal de

desenvolvimento de um sistema, devido as seguintes razdes:

e A linguagem foi criada especificamentie para a plataforma .NET;
s O compilador C# foi desenvolvido para dar suporte a linguagem;
o A maior parte das classes do .NET Framework foram desenvolvidas em

C#

A seguir, sio apresentadas as caracteristicas da plataforma .NET, descrevendo sua

arquitetura.

4.2 — Arquitetura NET

Neste item, a arquitetura da plataforma NET ¢ descrita através dos componentes que
a compde e em seguida é apresentada como uma aplicagdo .NET ¢ executada. Os

componentes da arquitetura NET s&o apresentados na figura 4.6.

47

Linguagens de programacéc

Basic Class Library

Common Type System (CTS) Common Language Specification
(CLS)

Common Language Runtime (CLR)

Figura 4.6 - Arquitetura da plataforma .NET (LIMA, E.; REIS,E., 2002).

O CLR (Common Language Runtime) representa o ambiente de execugdo das
aplicagdes .NET. As aplicagdes .NET néo sio aplicagdes Win32 propriamente ditas,
apesar de executarem no sistema operacional Windows, . O Win32, ao identificar
uma aplicagio NET ativa o runtime .NET que, a partir desse momento, assume o
controle total da aplicacfio, sendo compartilhado e, portanto, néo existe um runtime
para cada uma das linguagens, ele é comum a todas as linguagens suportadas pela

plataforma .NET.

No CLR hi o CTS (Common Type System), responsavel pela definigdo e
caracteristicas dos tipos suportados pela NET. As linguagens que podem ser usadas
na .NET , necessariamente, suportam esses tipos. Apesar da especificagdo nio
demandar que todos os tipos definidos no CTS sejam suportados pela linguagem,
esses tipos podem ser um subconjunto do CTS, ou ainda um superconjunto. Por
exemplo: um tipo Enum é derivado da classe System.Enum e todas as linguagens

implementam o tipo Enum da mesma forma. Na arquitetura proposta na plataforma

48

NET, todo tipo deriva da classe Object, € com isso, os diversos tipos nas diferentes

linguagens s3o implementados, obedecendo as regras definidas no CTS.

As regras do CTS sdo definidas pela CLS (Common Language Specification), que
constitui um subconjunto do CTS, e qualquer linguagem que a implemente na .NET,
devem atender estas regras, de modo que, o codigo gerado resultante da compilagdo
na referida linguagem seja perfeitamente entendido pelo runtime .NET, isto € um
imperativo porque, caso contrario, as vantagens da plataforma .NET, requisitos como
independéncia da linguagem de programagiio e interoperabilidade ficam

comprometidos.

Assim, dizer que uma linguagem ¢é compativel com o CLS significa dizer que,
mesmo quando esta é sintaticamente diferente de qualquer outra linguagem que
implemente a NET, semanticamente ela é igual, porque durante a compilago &
gerado um cddigo intermediario, denominado IL (Intermediate Language),
equivalente as duas partes iguais de codigos, porém escritas em linguagens

diferentes.

A plataforma .NET, como a plataforma Java, também tem como um dos objetivos,
simplificar o desenvolvimento de sistemas, e para tanto possui um conjunto de
classes béasicas denominado BLC (Basic Class Library). Na BLC encontram-se
bibliotecas de controle de entrada e saida de dados, graficos, sockets, gerenciamento
de memoéria (CHAPPELL, DAVID, 2002). Essas bibliotecas de classes estdo

organizadas hierarquicamente em uma estrutura denominada “namespace”.

Considerando os componentes descritos acima, pode-se observar que a plataforma
NET, apesar de inicialmente estar sendo concebida para o ambiente Windows,
possui uma arquitetura portdvel tanto em termos de linguagem de programagdo
quanto no nivel da arquitetura do processador, visto que o codigo gerado pode ser
interpretado para uma linguagem assembly da plataforma, em tempo de execugdo,

sem a necessidade de recompilagio do cédigo-fonte.

49

Para exemplificar, é apresentado um trecho cddigo tanto em VB.NET quanto em C#.

e Trecho de cddigo em VB.NET

Import System
Public Module AppNet
Sub Main()
Console. Writeline(“VB.NET")
End Sub
End Module

e Trecho de coédigo em C#.

Using system;

Public class AppNet
{
public class static void Main()
{
Console. Writeline(“C#);
}

Os dois trechos de c6digo acima, apesar de serem semanticamente diferentes, quando
traduzidos para IL tém como resultado o mesmo codigo intermediario (LIMA, E.;

REIS,E, 2002).

Para um entendimento mais adequado de como uma aplicagio .NET ¢ executada, ¢

preciso o esclarecimento de alguns conceitos:

e Tempo de compilagio: entende-se por tempo de compilago a parte do
processo de compilagio que diz respeito a geragdo de codigo IL e de

informacdes especificas da aplicago necessarias para sua correta eXecugio;

50

e Metadados: sdo conjuntos de instrugdes geradas no processo de
compilagio de uma aplicagio .NET, junto com IL, que contém as seguintes
informacdes especificas do sistema:
o A descri¢io dos tipos, usados na aplicagio, podendo esta ter sido
gerada em forma de executavel,
o A descrigio dos membros de cada tipo (propriedades, métodos,
eventos).
o A descri¢io de cada unidade de cédigo externo usado na aplicacio e
que é requerida, para que esta execute adequadamente;
o Resolugdo da chamada de métodos;
o Resolugfio de versdes diferentes de uma aplicagio.
Pode-se dizer que uma aplicagdio .NET é auto-explicativa, dispensando a
utilizagfio do registro do sistema operacional Windows, para armazenamento
de informacdes adicionais a seu respeito. O CLR vai pesquisar nos
Metadados a versdo correta da aplicagio a ser executada. Esta € uma
caracteristica adicional importante no que diz respeito 2 implementagéo e
manutencio de sistemas em producéo;
e Assembly: toda aplicagdo .NET, quando compilada, ¢ armazenada
fisicamente em uma unidade de cédigo denominada Assembly. Uma
aplicagiio pode ser composta de um ou mais Assemblies, 0s quais sdo
representados nos sistemas de arquivos em forma de executavel, ou de
biblioteca de ligagio dinimica conhecida como DLL (Dynamic Link
Library);
e PE (Portable Executable): quando um aplicativo ¢ compilado, sdo
geradas instrugdes em IL, os Metadados com informagdes do sistema também
s30 gerados e armazenados. Diz-se portavel porque ele pode ser executado
em qualquer plataforma que suporte a .NET, sem a necessidade de
recompilagiio, operagdo que ¢ efetuada automaticamente pelo runtime,
quando da execugdo do sistema;
e Compilaggo JIT (Just in time): um compilador JIT, também conhecido

como JITTER, converte instrugdes IL para instrugdes especificas das

51

arquitetura do processador onde a aplicagio .NET estd sendo executada. Na
plataforma .NET existem trés diferentes tipos de JITTER:

1. Pré — JIT: compila de uma sé vez todo codigo da aplicaggo .NET que
estd sendo executada e o armazena no caché para uso posterior;

2. Econo — JIT: é usado em dispositivos onde o limite de memoria €
baixo. Sendo assim, o cédigo é compilado sob demanda, e a memoria
alocada, que nfo esta em uso, € liberada;

3. Normal- JIT: compila o cédigo sob demanda e coloca o cddigo
resultante no caché, de forma que, esse codigo nfo precise ser
recompilado quando houver uma nova invocagdo do mesmo método.

« VES (Virtual Execution System): o processo de compilagio acontece no
VES, e é aqui onde o JITTER §é ativado quando uma aplicagio NET ¢
chamada. O JITTER é ativado a partir do runtime do sistema operacional
Win32, que transfere o controle para o runtime .NET, apds isso, 2
compilagio do PE ¢ efetuada e s6 entdo o cddigo assembly, proprio da
arquitetura do processador, ¢ gerado para que a aplicagdo possa ser

executada.

52

C# VB C+t+
compilador compilador compilador compilador
IL
—
Compilador JIT
1
Cédigo Nativo Gerenciado
I
Execugiio
CLR
Pentium II1 MIPS Mobile

Figura 4.7 — Processo de execugdo de uma aplicagdo NET(LIMA, E.; REIS,E,2002).

A figura 4.7 ilustra o processo de execugdo de uma aplicagdo .NET, desde a geragdo
de instru¢des em IL em tempo de compilagdo, até a geragdo do codigo assembly

especifico da plataforma de execugao.

O gerenciamento de memoéria é efetuado pelo runtime .NET, permitindo que o
desenvolvedor se concenire na resoluciio das regras de negécio. A medida que uma
4rea de meméria é necessaria para alocar um objeto, 0 GC (como na plataforma Java)

assume todo o controle de memdria que o sistema venha a precisar.

A plataforma .NET contém muitos recursos que visam néo s6 impedir diversos etros
de programagio, como também viabilizar a implantagio de um ambiente
gerenciador. Estes recursos sio conhecidos como .Net Managed Components. Neste

ambiente o cédigo nfo pode danificar o sistema de execugdio nem causar perda de

53

dados, isto ¢ especialmente importante na Internet, tanto do ponto de vista de um
usudrio que transfere um aplicativo da rede de algum local néo confidvel, como do

lado dos servidores, que ndo podem parar.

A base deste esquema € a seguinte:

e O sistema de tipos ndo pode ser violado, tode executavel contém
informages dos tipos usados e implementados e estas informag&es permitem
validagBes em tempo de execugdo.

e As permissdes de acesso a um determinado recurso, tal como arquivos,
conexdes TCP sdo validadas em tempo de execugdo em funcio de um
conjunto de atributos, tais como, permissdes do usuério, permissbes do
executdvel, sua origem e assinaturas digitais. Este sofisticado sistema de

seguranga recebe o nome de Evidence Based Security.

No item a seguir, apresenta-se ¢ desenvolvimento de componentes para aplicagdes
NET, que pode diferir em diversos tipos: aplicagdes clientes; aplicagdes graficas;

aplicages para Internet; aplicagdes para banco de dados; aplicagdes multitarefa.

4.3 - Desenvolvimento de aplicacdes para a NET

Na plataforma .NET existe a flexibilidade de desenvolvimento em diversas
linguagens, que sdo aderentes as especificagdes CLS da CTS, para que possam ser
compativeis. Dentre as linguagens que suportam a .NET podem ser citadas: C# ,
C++, Perl, Pascal, Cobol, Phyton, Visual Basic, Small Talk (LIMA, E;
REIS,E,2002). Para a linguagem Java, vém sendo desenvolvido pela Microsoft uma

versiio suportada pela plataforma .NET, e que ira se chamar J#(leia-se J-sharp).

A seguir, ¢ apresentado o desenvolvimento de aplicagdes .NET atraves da
linguagem C# como citado anteriormente, construida especialmenie para a

plataforma .NET.

4.3.1 - Lingnagem C#

54

As caracteristicas principais da linguagem C# séo:

e Simplicidade: os desenvolvedores de C# costumam dizer que essa
linguagem ¢ tdo poderosa quando o C++ e tdo simples quando o Visual
Basic;

e Orientada a Objetos: em C#, qualquer varidvel é parte de uma classe;

e Definigsio de Tipos: isso ajuda a evitar erros de manipulagfio impropria
de tipos, atribui¢des incorretas ¢ etc;

e Controle de Versdes: cada assembly gerado tem informagdes sobre a
versdo de codigo, permitindo a coexisténcia de dois assemblies homonimos,
mas de versdes diferentes no mesmo ambiente.

e TFlexibilidade: se o desenvolvedor precisar usar ponteiros, C# permite,

mas ao custo de desenvolver codigo ndo-gerenciado.

A seguir, é apresentado um exemplo de parte de um codigo em linguagem Ci.

using System,

class Helle

{

public static void Main(}

{
Console. WriteLine{"Hello World!!!");

}

Algumas consideragdes pode ser feitas em relagdo ao exemplo acima:

e A clatsula using referencia as classes a serem utilizadas;

e O “namespace” System contém muitas classes, uma delas ¢ a classe denominada
Console;

e O método WriteLine, simplesmente emite o texto no console.

335

Na plataforma .NET, o uso do “namespace” tem como fung&o estruturar logicamente
as aplicagdes. Fisicamente, & através dos assemblies que o codigo IL e as
informagdes de como os metadados gerados durante o processo de compilagdo sdo
armazenados no sistema de arquivos. A figura 4.8, exemplifica a estrutura de uma

aplicagdo .NET.

Aplicagdo .exe

Metadados

Codigo IL

Figura 4.8 — Estrutura basica de uma aplicagdo .NET

Em C#, um assembly é auto-explicativo ¢ ndo requer que informagdes adicionais

sejam armazenas no registro do sistema.

O C# agrega o VS.NET, possibilitando documentar o cddigo gerado utilizando a
linguagem XML. A linguagem XML facilita a gerag&o automatica de documentagdo,

a partir de comentarios inseridos no cédigo-fonte.

O VS.NET é um ambiente de desenvolvimento da mesma familia das versdes do
Visual Studio da Microsoft, mas ele é completamente integrado as linguagens

compativeis com a plataforma.

4.3.2 - Web Services

Para o desenvolvedor, um Web Service, no contexto da plataforma .NET pode ser
visualizado como uma pagina ASP.NET, que mapeia automaticamente pedidos via

Internet a métodos de uma linguagem de alto-nivel.

56

O ASP.NET constitui uma linguagem de desenvolvimento para aplicagdes .NET que
tem foco de execugio na Internet. Possui um sofisticado ambiente de
desenvolvimento e de execugiio, que traduz o modelo de programagio de uma forma
transparente ao desenvolvedor, fazendo com que este nfio precise conhecer as

variaveis do servidor.

O SOAP representa um papel importante na plataforma .NET e tem um extenso
suporte no Visual Studio.NET. Um Web Service no contexto da plataforma .NET ¢
representado por um conjunto de WebMethods. Os WebMethods sdo fungdes

chamadas remotamente através de SOAP.

Na plataforma .NET os Web Services sdio implementados sempre em uma classe
derivada de System.Web.Services.WebService. Nesta classe derivada, podem ser
adicionadas fungdes que sdo chamadas via SOAP. A diferenca entre um WebMethod
e um método comum ¢ a presenca de um “atributo WebMethod”, uma espécie de

diretiva de compila¢ao.

A seguir, ¢ apresentado um exemplo, de parte de um cddigo em linguagem C#,

definindo a leitura de um arquivo XML.

XMLReader xml = null;

Private void loadXMLJ{)

{
Try
{

57

xml = new XMLReader(fileName);
while(xmlRead())
switch(xmx.name)
{
case “txtName™:
txtName. Text = xml.ReadString();
break;
default:
break;

'

}

catch(Exception ex)

{
MessageBox.Show(“Error - load file ” + ex.toString();

H
finally

{

if(xml!=null) xml.close();

A classe XML usada no cdédigo acima esta contida no namespace System.XML.
Como na plataforma J2EE, a plataforma .NET contem um conjunto completo de

classes (namespace) que podem ser utilizadas na construgdo de Web Services.

38

5 — ANALISE COMPARATIVA ENTRE A ARQUITETURA EJB DA
PLATAFORMA E ARQUITETURA DA PLATAFORMA .NET

A arquitetura EJB da plataforma J2EE e a arquitetura da plataforma .NET
apresentam caracteristicas semelhantes para o gerenciamento de sistemas em
ambientes distribuidos, quando analisadas superficialmente, ¢ a principio, um
desenvolvedor pode ser capaz de construir sistemas similares utilizando uma ou outra
plataforma. Porém, existem diferengas fundamentais na selegio de uma dessas

arquiteturas, conseqiientemenie também, para plataformas que as adotam.

As duas arquiteturas utilizam o mesmo conceito de execugo de sistemas, onde um
c6digo primério, desenvolvido através de linguagens padrdes ou suportadas pelas
plataformas, é compilado para um cédigo intermediério (IL na .NET ¢ Byte Code na
EIB) e executado em um sistema operacional virtual, o CLR na plataforma .NET e

JRE na plataforma J2EE.

A JRE é utilizada para executar sistemas, desenvolvidos na linguagem Java, em
véarios ambientes operacionais. Essa portabilidade permite que um sistema
desenvolvido, originalmente para um sistema operacional, possa ser executado sem

alteragSes em outros sistemas operacionais.

Por outro lado, o CLR mapeia diversas linguagens de desenvolvimento,
possibilitando maior flexibilidade na escolha da linguagem de programagéo porém,
restrita a uma Unica plataforma utilizando o sistema operacional Windows. O suporte
oferecido a diversas linguagens impde algumas restrigdes, obrigando essas

linguagens a seguir algumas definigdes impostas pelo CTS.

Em relagdo 3 infra-estrutura para o gerenciamento componentes, na arquitetura EJB
existemn mais recursos do que os oferecidos pelo Net Managed Components, para 0s
componentes .NET,.como por exemplo, acesso automatico de objetos no banco de

dados. As linguagens de desenvolvimento para construgdo de componentes, nas duas

59

plataformas, possuem diversos pacotes ou bibliotecas que podem ser utilizadas,

inclusive para construgiio de Web Services baseados em SOAP ¢ XML.

A linguagem C# representa a linguagem de referéncia para plataforma .NET, tal
como a linguagem Java para a plataforma NET. A linguagem C# possui mais
recursos do que a linguagem Java, em especial os recursos para manipulagdo de
ponteiros. Porém, esses recursos devem ser utilizados com critério, pois ndo sdo
controlados pelo Net Managed Components. Os cédigos gerados com esses recursos

sio conhecidos como c6digos inseguros (LIMA, E.; REIS,E,2002).

A linguagem ASP.NET da plataforma .NET , que possui um avangado ambiente de
desenvolvimento e de execugdo para sistemas no ambiente da Internet, pode ser
citada como um diferencial, pois possui varios recursos que visam facilitar o
desenvolvimento. Em contrapartida, a arquitetura EJB possui recursos como Beans
persistentes, usados para controlar transagdes, seja com um banco de dados ou com
outros Beans, que também visam facilitar o desenvolvimento diminuindo a

complexidade de construgio dos sistemas.

Para integra¢io de sistemas em ambientes distribuidos, nas duas arquiteturas, pode-
se utilizar o padrio CORBA, garantindo-se que as necessidades de interoperabilidade

dos sistemas sejam supridas.

A escalabilidade oferecida pelos servidores de aplicagdo da arquitetura EJB,
representa outra caracteristica muito importante para expansdo de sistemas. Porém,
na plataforma NET, para os sistemas criticos existe a restri¢do de serem executados

somente sobre a plataforma Windows.

Em relagdio aos padrdes de plataforma, apenas a linguagem C# foi padronizada na
plataforma .NET, o restante da plataforma permanece como produto proprietario da
plataforma Windows. Em contrapartida, a arquitetura EJB incorpora os padrdes da

plataforma J2EE, ou seja, aberto (JAVA,2002)

60

A plataformas J2EE e .NET ndo possuem compatibilidade nem mesmo de codigo
fonte, esta sendo aguardado o langcamento do J#. Portanto, um mesmo programa nédo

pode ser testado em ambas arquiteturas.

A Microsoft reescreveu a aplicagdo JPS(Java Pet Store) (JPS,2002), tutorial da
plataforma J2EE para plataforma .NET, mostrando que o desempenho da arquitetura
chega ser 28 vezes superior ao da arquitetura EJB. Esse porte fol criticado por ser
muito diferente do original, nfio preservando os principios bésicos das arquiteturas. O
JPS é escrito em trés camadas, enquanto a versdo da plataforma .NET utiliza

inclusive, stored procedures.

A EJB tem presenga marcante no mercado corporativo, em servidores de aplicagio.
Em compensagiio, a Microsoft domina o mercado dos computadores pessoais, esse
mercado pode estar relativamente saturado, mas ainda ¢ muito lucrativo e pode ser

usado para alavancar iniciativas na plataforma .NET.

A tabela 5.1, apresenta um quadro comparativo entre as caracteristicas das

plataformas J2EE e .NET.

Caracteristica J2EE NET

Tipo de Tecnologia Aberta e padronizada Proprietaria e semi -
padronizada

Sistema operacional virtual | JRE CLR

(Interpretador)

Linguagem Padrio Java C#

Portabilidade Sim Nzo

Escalabilidade Sim Nio

Interoperabilidade Padrdo CORBA Padrio CORBA

Suporte a varias linguagens | Nao | Sim

de desenvolvimento

Gerenciamento de |EJB Net Managed Components

componetes

61

Tabela 5.1 - Quadro comparativo entre as plataforma J2EE e .NET

A principio, ambas arquiteturas irfio coexistir ¢ ter boas representagdes no mercado,

possibilitando a escolha da solugéo mais adequada para cada corporagéo.

62

6 - CONCLUSAO

A escolha de uma arquitetura adequada é um desafio para um arquiteto de sistemas,
cada uma tem seus pontos fortes e fracos. Portanto, varios aspectos devem ser
considerados, como por exemplo, requisitos de escalabilidade e desempenho,
utilizacsio de padrdes, maturidade da arquitetura, tendéncias do mercado, entre
outros. Assim sendo, para uma tomada de decisfio, ¢ necessaria a defini¢io de
estratégias, em relagio ao desenvolvimento de sistema, a médio e em longo prazo,

levando em conta o perfil da equipe ¢ o legado existente na corporag@o.

Considerando o momento atual e baseando-se nas caracteristicas analisadas nesse
trabalho, pode-se afirmar que a arquitetura EJB representa a melhor solugio para
gerenciamento de objetos em sistemas distribuidos. A portabilidade e escalabilidade
podem ser citadas como o maior diferencial da arquitetura EJB, pois sdo requisitos

indispenséveis neste tipo de ambiente.

Em relagiio ao gerenciamento de objetos, pode-se dizer, que os servidores EJB séo
tecnologicamente mais avangados que os servidores .NET. Além disso, ela segue um
padriio, que garante a compatibilidade de diferentes versoes do produto, podendo ser
portavel para diferentes plataformas e possui um grupo de fornecedores a altura da

prépria Microsoft, que no caso da plataforma NET representa um tnico fornecedor

de servidores.

Por outro lado, dependendo da perspectiva e da estratégia adotada na empresa, a
NET pode ser considerada como um ambiente de uma proxima geragdo. A
linguagem de programagdo C #, a adogdo do XML e SOAP apresentam uma
estrutura nova de intercAmbio de dados. A arquitetura NET podera vir a dominar o
mercado, devido ao grande mimero de usuério de produtos da Microsoft. Porém, para
que isso aconteca, a evolugdo dos servidores da plataforma .NET ¢ essencial. Além
disso, no mundo Microsoft, cada nova versdo de um produto, geralmente exige

alteracdes em todos os sistemas.

63

As especificacdes atuais do EJB possuem limita¢des em relagfio ao controle e acesso
a objetos, nfio oferecendo suporte & seguranga necessaria as regras de negocio de
uma determinada aplicagdo, que normalmente sfio codificadas diretamente nos
métodos de negécio do EJB. O JBoss (JBOSS, 2002) possui uma arquitctura
especifica para assegurar que as implementagGes relativas 4 seguranca de regras de

negocio sejam separadas em objetos distintos.

Por adotar um padrio aberto, o JBoss depende extensivamente de terceiros para o
desenvolvimento de ferramentas. Contudo, com a tendéncia crescente de adeptos a
comunidade de desenvolvimento de solugbes para padrdes abertos, isto possibilita
uma ascensdo rumo ao desenvolvimento de tais ferramentas. Este trabalho pode
servir de base para futuros pesquisas e um estudo aprofundado sobre os servidores de

aplicacfio da arquitetura EJB, em especial o JBoss, em fungdo dos seus principios.

64

REFERENCIA BIBLIOGRAFICA

COAD, P.; YOURDON, E. Object-Oriented Analysis. Ed. Prentice Hall, 1991.

PINTO, A. P.; Depoimento extraido da obra Microsft. NET - Beneficios e
Oportunidades. Sdo Paulo, v.1, p.10, 2001.

CORBA; CORBA 2.6.1 Specification; s.1., v. 2.6.1, 2002.

OMA; Object Management Group, Inc. Disponivel em: http:/cgi.omg.org/oma/.
Acesso em 10, jul. 2002.

HARKEY, D. ; ORFALI, R., Client/Server Programming With Java and
CORBA, Ed. John Wiley & Sons, 1997.

MOWBRAY, T.J.; ZAHAVI R.; The Essential CORBA, John Wiley & Sons and,
1995.

SOARES, LF.G; LEMOS, G; COCHER, S.; Redes de Computadores. Ed.
Campus, 1995.

MATOS, J. P.; Figura extraida do material do médulo Aplicagdes Cliente Servidor,
do MBA em Tecnologia da Informacio da Faculdade de Economia e Administragdo
da Universidade de So Paulo, 2002

HAEFEL, R. M, Enterpise JavaBeans, Ed. O'Reilly, 1998.

EIB; Enterprise JavaBeans Technology. Disponivel eI

http://java.sun.com/ejb/index.htm. Acesso em 2, dez. 2001.

JAVA; Essential Java Classes Disponivel em:

http://java.sun.com/docs/books/tutorial/essential/index.html. Acesso 23, jan 2002

65

XML; Extensible Markup Language.Disponivel em http://www.w3.org/XML/,
Acesso em 14, set. 2002

SOAP; SOAP 1.2 spec. . Disponivel em: http:/www.w3.org/2000/xp Group/.
Acesso em 02, nov. 2002

WEBSERVICES; Web Services Activity. Disponivel em:
hittp:/fwww.w3.ore/2002/ws/. Acesso em 10, nov. 2002.

MICROSOFT; Microsft. NET - Beneficios e oportunidades. S.n. 2002

NET; Componentes da plataforma .NET. Disponivel em
<http://www.microsoft.com/brasil/net/componentes/default.asp>.

Acesso em 15, de set. de 2002.

I2EE; Documentation. Disponivel em:

http://developer.java.sun.com/developer/infodocs/. Acesso em 10, set. 2002,

BOOCH, G; RUMBAUCH, J; JACOBSON, L. The Unified Modelling Language
User Guide. Ed. Addilson Wesley, 1999

LIMA, E.; REIS,E; C# e .NET — Guia do Desenvolvedor. Ed. Campus, 2002
CHAPPELL, DAVID; Undertanding .NET - Tutorial and Analysis. Ed.
Addilson-Weslley,2002.

JPS; Java Pet Store.Disponivel em: 2002; Acesso em 10, set. 2002.

APPLETS; Applets. Disponivel em: hitp:/java.sun.com/applets/. Acesso em 19, out.
2002

66

RMI;Java Remote Method Invecation. Disponivel em

http://java.sun.com/products/jdk/rmi/index.html. Acesso em 10, ago. 2002

SERVLET; Servlet. Disponivel em; http://java.sun.com/products/serviet/index.html.
Acesso em 10, set. 2002.

JAVADOC;Javadoc Tool Home Page. Disponivel em:

hitp:/java.sun.com/j2se/javadoc/index.himl. Acesso em 20, ago. 2002,

